Introduction
Numerical model for ideal element
Sources of imperfections
Radial imperfections
Angular imperfections
Conclusions and Plans

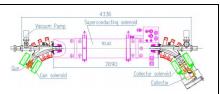
Numerical model for hollow electron beam collimator

Ivan Morozov

Accelerator Physics Center Fermi National Accelerator Laboratory

October 6, 2011

Introduction (1)

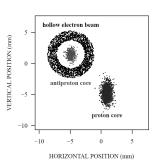


Advantages:

- no material damage
- low impedance
- controled by magnetic field
- transverse kicks are not random
- resonant exitation

Disadvantages:

- small kicks
- electron beam imperfections



Introduction (2)

Goals

- develop a numerical model for hollow electron collimator to be integrated into beam dynamics simulations for Tevatron
- compare with experements for Tevatron

ightharpoonup – : $\vec{v}_{\bar{p}}\vec{v}_e > 0$

 $ightharpoonup + : \vec{v}_{\bar{D}}\vec{v}_{e} < 0$

Trajectories integration

First order symplectic drift-kick integrator,

$$x'_{n+1} = x'_n + \Delta x'(x_n), \quad x_{n+1} = x_n + x'_{n+1} \Delta s$$

kicks are expressed via electron beam rest frame transverse electric field E_{x} and E_{v} ,

$$\Delta x' = \Delta s \frac{e \gamma_e (1 \pm \beta_e \beta_{\bar{p}})}{c \beta_{\bar{p}} \rho_{\bar{p}}} E_x, \qquad \Delta y' = \Delta s \frac{e \gamma_e (1 \pm \beta_e \beta_{\bar{p}})}{c \beta_{\bar{p}} \rho_{\bar{p}}} E_y$$

- γ_e electron relativistic factor
- \triangleright β_e electron relative velocity
- \triangleright $c\beta_{\bar{p}}$ antiproton beam velocity

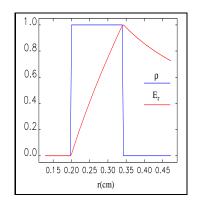
Kick from ideal charge distribution

$$\Delta r' = \begin{cases} 0 & \text{if } r < r_1 \\ 2\Omega_e \frac{r^2 - r_1^2}{r(r_2^2 - r_1^2)} \Delta s & \text{if } r_1 < r < r_2 \\ 2\Omega_e \frac{1}{r} \Delta s & \text{if } r > r_2 \end{cases}$$

$$\Omega_e = 0.3 \times 10^{-7} \frac{\textit{I}_e \text{ [A]}}{\textit{p}_{\bar{\textit{p}}} \text{ [GeV/c]}} \gamma_e \frac{1 + \beta_e \beta_{\bar{\textit{p}}}}{\beta_e \beta_{\bar{\textit{p}}}}$$

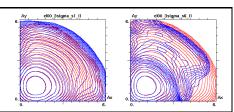
 I_e - electron beam current, $p_{\overline{p}}$ - antiproton momentum

 r_1 - inner beam radius, r_2 - outer beam radius

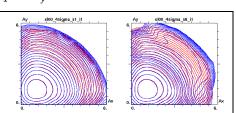


Simulation of ideal lens (1)

$$r_1 = 3\sigma_v$$



$$r_1 = 4\sigma_v$$



Antiproton beam size:

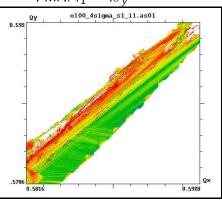
- $\sigma_x = 0.32 \, [\text{mm}]$
- $\sigma_{v} = 0.50 \; [\text{mm}]$

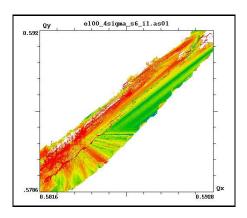
Simulation parameters :

- $I_e = 1.0 [A]$
- $\beta_e = 0.2 \text{ (about 10 [keV])}$
- $L_e = 200.0 \text{ [cm]}$
- $ightharpoonup 3 imes 10^6$ turnes (about 1 minute)
- pulse pattern 1/1 (left) and 1/5 (right)
- ▶ lattice turns $Q_x = 0.578$, $Q_y = 0.575$

Simulation of ideal lens (2)

FMA: $r_1 = 4\sigma_y$

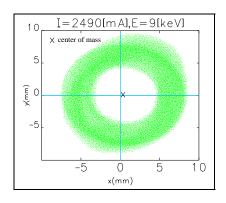




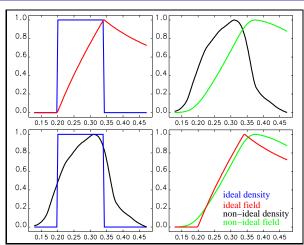
$$skip = 1/1$$

Sources of imperfections

- ► lack of the axial symmetry
- deviations in radial distribution
- electron beam bends
- longitudinal density variations
- beam misalignment



Radial model (1)

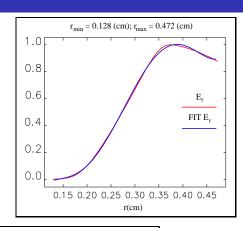


This profile corresponds to electron current $I_e=2.0[A]$. Typical current in experements is $I_e=0.5[A]$.

Radial model (2)

$$\Delta r' = 2\Omega_e \frac{f(r)}{r_m} \Delta s$$

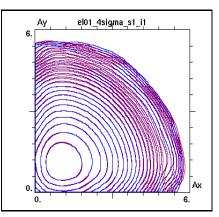
- ightharpoonup f(r) interpolated polynom
- $f(r_m) = 1.0$



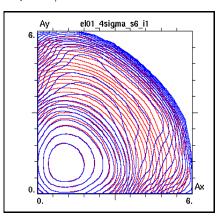
$$f(r) = -2.6 + 63.0r - 584.0r^2 + 2512.9r^3 - 4838.9r^4 + 3405.0r^5$$

Simulation of radial model

$$skip = 1/1$$



skip = 1/5



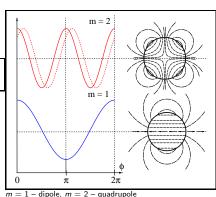
Cylindrical model (1)

$$\rho(r,\theta) = \frac{f(\theta)}{2\pi r_b} \delta(r - r_b)$$

$$\Delta x' = \Omega_e \Delta s \xi_m \begin{cases} -r^{m-1} r_b^{-m} \cos((m-1)\theta + \delta_m) & \text{if } r < r_b \\ r^{-m-1} r_b^{m} \cos((m-1)\theta + \delta_m) & \text{if } r > r_b \end{cases}$$

$$\Delta \mathbf{y}' = \Omega_e \Delta \mathbf{s} \xi_m \begin{cases} r^{m-1} r_b^{-m} \sin((m-1)\theta + \delta_m) & \text{if } r < r_b \\ r^{-m-1} r_b^{m} \sin((m-1)\theta + \delta_m) & \text{if } r > r_b \end{cases}$$

- m harmonic number
- ξ_m relative harmonic amplitude
- δ_m harmonic phase



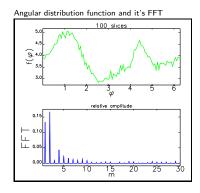
m = 1 – dipole, m = 2 – quadrupole

Cylindrical model (2)

Harmonics parameters for real beam profile

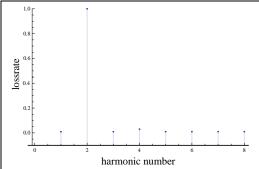
m	$\xi_r(r_b = 2.0mm)$	$\xi(r_b = 10.0mm)$	δ
1	0.179	0.90	-0.9
2	0.136	3.34	-2.35
3	0.037	4.73	3.10
4	0.026	16.10	1.99
5	0.008	24.48	-1.20

The dominant harmonic is the second one (quadrupole) about 15 - 20%.

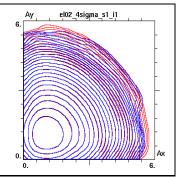


Simulation of cylinder model (1)

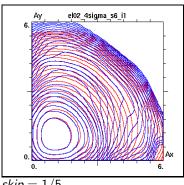
Simulations for different harmonics were performed (m = 1...20) with pulse patterns skip = 1/1, 1/2, ..., 1/8.



Simulation of cylinder model (2)



 $\overline{skip} = 1/1$



$$skip = 1/5$$

Conclusions

- several transverse numerical models were developed
 - ideal element
 - element with radial imperfections
 - element with angular imperfections
- simulations were performed for Tevatron structure
 - ideal element behaves as it should
 - no significant emittance growth from imperfections
 - ightharpoonup angular imperfections only significant for quadrupole harmonic with $\mathit{skip} = 1/5$

Plans

- comparison with Tevatron experimental data
- integration into SixTrack, MAD
- lens misalignment
- edge effects
- high order integrators
- ▶ 3D field from Warp code

Thank you for your attention!